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Abstract 
Complex engineered systems tend to have architectures in which a small subset of components exhibits 

a disproportional number of linkages. Such components are known as hubs. This paper examines the degree 

distribution of systems to identify the presence of hubs and quantify the fraction of hub components. We 

examine how the presence and fraction of hubs relate to a system’s quality. We provide empirical evidence 

that the presence of hubs in a system’s architecture is associated with a low number of defects. Furthermore, 

we show that complex engineered systems may have an optimal fraction of hub components with respect 

to system quality. Our results suggest that architects and managers aiming to improve the quality of complex 

system designs must proactively identify and manage the use of hubs. Our paper provides a data-driven 

approach for identifying appropriate target levels of hub usage. 
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1 Introduction 

This paper considers complex engineered systems as networks of interconnected components. In many 

such networks, some nodes are more connected than others [1-5].  The most highly connected components 

are called hubs. In this paper, we provide econometric analysis to support the argument that the presence 

of hubs has a significant effect on system quality (measured by the number of defects in the system).  Thus, 

although hubs typically constitute only a small fraction of a system’s components, they provide high-

leverage points for designers and managers to design and maintain high-quality systems. 

This paper integrates two streams of literature; we build on both the engineering design literature (both 

from hardware and software domains), which uses product architecture representations to capture systems 

as networks of interconnected components, and the literature on complex networks, which has focused on 

uncovering the underlying properties that characterize complex, real-world networks. 

The literature on engineering design has characterized complex engineered systems as networks of 

interdependent components as a way to improve our understanding of the architecture of complex products 

[6-12]. A common theme in this literature stream is the use of a square matrix (i.e., a design structure matrix 

(DSM)) to represent the components comprising a system and how these components interconnect [13-15].   

In this paper, we also rely on a DSM representation to capture the architecture of the systems in the sample 

we analyze. 

The complex networks literature has primarily focused on uncovering the fundamental properties that 

govern network topology and dynamics  (See [5, 16, 17] for reviews.)  Recent studies in various disciplines 

from Physics to Engineering to Sociology have put considerable attention on finding a set of underlying 

network properties in complex physical, software, and social systems such as the world-wide web [18, 19], 

power grid networks [4, 20], scientific collaboration networks [21], and  new product development task 

networks [1-3]. 

A salient property in complex network studies is the degree distribution. Degree distribution is defined 

by the probability, 𝑝𝑝𝑘𝑘, that a node in a network has 𝑘𝑘 connections with other nodes in the network [5]. By 

examining the degree distribution, previous research has found that many complex networks exhibit a scale-
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free property, wherein a few nodes are heavily connected while most are not [3, 18, 19]. Examining the 

degree distribution of complex networks also led to the notion of hubs, the relatively small subset of 

components that are most highly connected (see [5] for review). Albert et al. [22] suggested that a 

pronounced hub-periphery structure can account for the resilience of scale-free networks to random failures.  

Since any randomly failing node probably has small degree, it is expendable. On the other hand, such 

networks are vulnerable to deliberate attacks on the hubs. These effects have been confirmed numerically 

(e.g., [22]) and analytically (e.g., [23]).  In addition to resilience, Braha and Bar-Yam [3] explored dynamic 

aspects of system quality in the context of product development organizations. They showed that complex 

development networks are asymmetric in the degree distribution of incoming and outgoing links and 

confirmed, via simulation, the benefits of highly skewed degree distributions for the resolution speed of 

interdependent task networks.  Thus, the presence of hubs can improve system performance. 

We build on these literature streams to empirically show that there is an optimal presence of hubs which 

minimizes the number of defects in the system. First, we test whether the mere presence of hubs relates to 

lower levels of defects.  Then, we test whether there is an optimal fraction of hub components that 

minimizes the levels of defects in a system. Our study provides an econometric-based approach for design 

managers to systematically evaluate the link between the fraction of hub components and system quality in 

their own contexts.  

In the next section, we illustrate how to identify hubs through examination of the degree distribution of 

three mechanical systems examined in previous engineering studies. In Section 3, we build our theoretical 

argument to formulate two hypotheses; in Section 4, we conduct an econometric analysis based on a large, 

longitudinal data set of (software) systems. We conclude the paper by discussing the implications of our 

results for researchers, designers, and managers. 

2 Degree distribution and hubs in complex engineered systems 

In this section, we discuss how to examine the degree distribution of a system to formally identify 

“hubs”. This paper builds upon the terminology and toolset developed in the context of the analysis of 

complex networks to establish a formal criterion for identifying the hub components of a system [1-4, 17]. 
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In network and graph theoretic terms, the degree of a node in a network (or graph) is defined as the 

number of edges incident with it [24]. Hence, the degree of a system’s component counts the number of 

other components (within the system) it connects to. As a result, the degree distribution captures how 

connections are distributed among the system’s components (e.g., [1-4]). 

Informally, a hub is a component that is disproportionally more connected (i.e., that have a 

disproportionally higher degree) than most of the other components in the system [16, p. 169]. While the 

notion of a hub is intuitive, a formal criterion to identifying hubs is non-trivial because it requires drawing 

the line that separates the most connected components (hubs) from the less connected ones [25-27]. Next, 

we discuss three alternative ways of identifying the presence of hubs in a system. 

2.1 Identifying hubs based on the cumulative degree distribution 

  In line with previous work on complex networks (e.g., [3, 5]), we examine the degree distribution of a 

system to identify the presence of hubs. Based on an automobile climate control system [6], Figure 1 

illustrates how to capture and examine the degree distribution of a system to identify its hub components. 

Starting with the product itself, the basis for identifying a hub is first to represent the product as a DSM 

by identifying its components and the linkages between them (see Step 1 of Figure 1).  The automotive 

climate control system consists of 16 components and 68 interfaces (𝑁𝑁 = 16, 𝐾𝐾 = 68). In a second step 

(see Step 2 of Figure 1), by first summing over the rows (or columns) of the DSM and then building the 

frequency distribution over the resulting degree vector (𝒌𝒌), we obtain the degree distribution. It shows the 

count of components that have a certain absolute number of interfaces (i.e., component degree,  𝑘𝑘 ). 

Specifically, the system in Figure 1 has, for example, three components with a degree of 2, two components 

with a degree of 3, and one component with a degree of 8. Clearly, the degree distribution depends on the 

size of the system. As a consequence, a definition of a hub based on the degree distribution cannot be 

universally applicable. So as to allow for a widely applicable criterion to identify hubs, it is imperative to 

normalize both the horizontal and vertical dimensions of the distribution. Thus, in step 3 the normalized 

degree distribution is obtained by expressing each value (whether it be the x-axis or the y-axis) as a 

percentage of its respective system maximum [28]. The horizontal axis is normalized by dividing the actual 
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component degree by its theoretical maximum (𝐷𝐷 = 𝑘𝑘 (𝑁𝑁 − 1)⁄ ), and the vertical dimension is normalized 

by dividing each count of components by the total number of components in the system (𝑁𝑁). Hence, all bars 

sum to one, yet the shape of the distribution is unaffected by the normalization method.  

Since a formal method for quantifying the number of hubs has to contrast the subset of components that 

are highly connected against the other components that are only marginally connected, we split the 

normalized degree distribution shown in Step 4 of Figure 1 into two groups of components so that there is 

a highly connected group, the potential hub components, and a less connected group. Because we can split 

the normalized degree distribution arbitrarily at any point along its horizontal axis, there are as many 

alternative ways to define what potentially constitutes a system’s set of hubs as there are valid splitting 

points. To illustrate this fact, consider Step 4 of Figure 1. Splitting the normalized degree distribution at 

𝐷𝐷 = 0.40 yields a percentage of hubs of 𝑄𝑄0.40 = 0.25. That is, the top 25% of most connected components 

have a normalized degree of 0.40 or higher. For the split at 𝐷𝐷 = 0.33, the percentage of hubs is 𝑄𝑄0.33 =

0.38. We can repeat this procedure of splitting for any value of 𝐷𝐷. Doing so, in the last line of Figure 1 we 

plot the cumulative distribution (𝑄𝑄𝐷𝐷  for each 𝐷𝐷 , in steps of 𝐷𝐷  of 0.05). 𝑄𝑄𝐷𝐷  measures the fraction of 

(potential) hubs with normalized degree 𝐷𝐷. 
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Figure 1: Schematic, product DSM, and degree distributions of an automotive climate control system 
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From the cumulative distribution plot shown in the bottom line of Figure 1 it is clear that, when 

considering 𝐷𝐷 ≤ 0.30, the majority of components (i.e., more than 50% of the components) are in the group 

with high degree. For instance, considering 𝐷𝐷 = 0.27 will result in 𝑄𝑄0.27 = 0.69 > 0.50. That is, the top 

69% of the components have a normalized degree of 0.27 or more. In such a split, more than 50% of the 

components in the system would be considered hubs, which would counteract the intuition that hubs 

comprise a minority of the components.1 This suggests that we need to establish a criterion to define an 

acceptable lower bound for D that can be used to identify hubs.2 

A lower bound for D can be defined in several ways. A first approach could be based on identifying a 

significant change in regime of the distribution. Such an approach is used in social networks to identify 

core-periphery structures [25] and in engineering design to identify modular and integrative subsystems 

[27]. The drawback with such an approach is that for certain degree distributions, such as the power law 

distribution, changes in regime may not exist [4]. A second approach would involve imposing a fixed limit, 

which in itself can be a function of the mean degree in the network (e.g., hubs must have a degree x times 

larger than the mean degree in the network) or can be externally defined (e.g, Braha and Bar-Yam [26] 

defined hubs as the top 1000, or 1.7%, most connected nodes in the networks they analyzed). A naïve 

approach would advocate that it is counter-intuitive to accept that the majority of components could be hub 

components, so an acceptable D would be one that guarantees 𝑄𝑄𝐷𝐷 < 50%. A Pareto law-based approach 

(e.g., [29]) with its focus on the 20% most significant elements of a distribution would suggest that, at most, 

20% of components could be hubs. A radically agnostic view would not impose any lower bound on D a 

priori and leave such a decision to the decision maker for the particular situation.  

We deliberately do not define a hub based on any specific (arbitrary) D; rather, we allow the decision 

maker to choose a lower bound of D (𝐷𝐷𝑜𝑜). We only require that D be chosen such that the fraction of hub 

                                                      
1 Although the intuitive notion of hubs suggests that they constitute a set that is both highly connected and small, the 
set does not necessarily need to be small. For instance, Strogatz ([5], p. 274) referred to hubs as simply highly 
connected components, even if they constitute the majority of the components in the system. 
2 Here we assume that a system has, at least, one hub unless its degree distribution gives positive probability weight 
to only one degree ko (i.e., all components have the same degree, ko). In such degree distributions, we cannot identify 
hubs because we cannot split the degree distribution at any point.  
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components, 𝑄𝑄𝐷𝐷, is smaller than a pre-defined threshold, 𝑄𝑄𝐷𝐷𝐷𝐷. (𝐷𝐷 ≥ 𝐷𝐷𝑜𝑜 such that 𝑄𝑄𝐷𝐷 ≤ 𝑄𝑄𝐷𝐷𝐷𝐷.) We use a 

Pareto-based criterion to identify hubs in our analysis (𝑄𝑄𝐷𝐷𝐷𝐷= 0.20). Such a threshold ensures that hub 

components in the systems we analyze always have a normalized degree significantly greater than the mean 

normalized degree. This is consistent with the notion of right-skewed distributions put forward in the 

complex network literature [3]. Formally, 

Definition A component is a hub if both of the following conditions hold: (i) its normalized degree, 𝐷𝐷𝑖𝑖, is 

greater than or equal to a predefined D (𝐷𝐷𝑖𝑖 ≥ 𝐷𝐷), and (ii) the fraction of components in the system for 

which 𝐷𝐷𝑖𝑖 ≥ 𝐷𝐷,𝑄𝑄𝐷𝐷, is less than or equal to a predefined threshold 𝑄𝑄𝐷𝐷𝐷𝐷 (𝑄𝑄𝐷𝐷 ≤ 𝑄𝑄𝐷𝐷𝐷𝐷). 

Our approach for identifying hubs is not specific to the automotive climate control system shown in 

Figure 1. For comparison, Figure 2 applies this approach to two considerably larger mechanical systems: 

(a) an automobile climate control system [6], (b) a large commercial aircraft engine [11, 27], and (c) the 

Mars Pathfinder [30, 31]. These systems are modeled at the level of 16, 54, and 43 components respectively. 

Although the DSMs of the systems in Figure 2a and 2c are symmetric, which result in identical in-degree 

and out-degree distributions, the depiction of the aircraft engine (Figure 2b) shows a non-symmetric DSM, 

because it acknowledges that some components depend on others but not vice-versa (see [11, 27] for 

details). In such a case we could plot the degree distribution corresponding to the incoming and outgoing 

dependencies of each component. For simplicity we plot the in-degree distribution of the engine. Yet, 

considering the asymmetry of in- and out- degree distributions is important, because such asymmetric 

distributions exist in complex engineered systems, and because such asymmetry may have a significant 

impact on system quality [1-3]. 
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Figure 2: Product depiction, DSM and degree distributions for the climate control system (left hand panel), 

an aircraft engine (middle panel) and the Mars Pathfinder (right hand panel) 
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HPT 2V AC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

HPT Rotor AD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HPT Case/OAS AE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1

LP Shaft AF 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
LPT Case AG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1

TEC AH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 1
LPT Vanes AI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LPT Blades AJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LPT OAS / TDucts / Insulation AK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mainshaft IPT AL 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

Gearbox AM 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 1
#3 Breather Valve AN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0

Oil Pump AO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0
Intershaft Seal AP 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

PMA AQ 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 1 0 1
Mech. Comp'ts -  Oil System AR 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 0

Externals Tubes AS 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1
2.5 Bleed Butterfly AT 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1

Externals/Controls Air system AU 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1
Externals/Controls Oil system AV 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 0 1 0 1 0 1 1 1 1

Externals/Controls Fuel / Drain AW 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1
Ignition AX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1
Harness AY 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1 0 1 0 1

Controls - Sensor AZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1
Controls - Mechanical BA 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1

Controls - Electrical BB 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 0
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2.2 Two alternative approaches to identify hubs 

There are alternative approaches to identify hubs. By examining the degree distribution in log-log scales, 

as is typically done in the complex network literature, we can check if the system under consideration has 

a degree distribution that follows a power law [3, 32, 33]. Power law distributions have received significant 

attention in the literature because they have “fat” (or heavy) tails [5, 16]. “Fat tails” imply that there are 

components (hubs) that are substantially more connected than others. Power law distributions appear in a 

log-log plot as a straight line whose slope (measured by 𝛾𝛾) defines the distribution and thus the “fatness” 

of the right tail. Thus, if the distribution follows a power law, parameter 𝛾𝛾 can serve as a measure for the 

number of hubs. The less negative 𝛾𝛾, the larger the right tail of the distribution, and thus the larger the 

number of hubs in the system [5]. 

Figure 3 plots in log-log format the cumulative distributions of the three systems shown in Figure 2. 

Both the climate control and the aircraft engine systems have degree distributions that do not follow a power 

law, as indicated by the poor fit of the best fitted line in their log-log plots (the R2 of the fitted lines are 0.68 

and 0.63, respectively; both failed a Pearson Chi-square test for a power law governed degree distribution). 

The degree distribution of the Mars pathfinder offers a better fit (R2 = 0.93), yet it also failed the Pearson 

Chi-square test. This is consistent with previous work showing that the degree distributions of complex 

hardware and software systems often do not follow a “pure” power law but a power law with “cut-offs” 

[3]. (“Cut-offs” can be associated with long-tailed degree distributions in complex product development 

networks [3].) Some systems follow no power law regime at all [5, 21]. For such systems a power law may 

only be a very rough approximation for the “fat tail.” Therefore, using 𝛾𝛾 to estimate the extent to which 

hubs are present in a system has the drawback of sometimes unrealistically imposing a specific functional 

assumption on the form of the degree distribution. 
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Figure 3: Log-Log Plot of the cumulative distributions for the climate control system (left hand panel), an 
aircraft engine (middle panel) and the Mars Pathfinder (right hand panel) 

Another alternative way to capture the presence of hubs, without making any assumptions regarding the 

functional form of the degree distribution, is by considering its skewness (the third moment of the degree 

distribution). Because right-skewed distributions (positive values of skewness) indicate a small set of 

components with large values of degree, we can assume that the more right-skewed the distribution (the 

more positive its skewness) the more hubs it may have. For instance, the degree distributions of the three 

systems shown in Figure 2 have skewness values of 0.4469, 0.6879, and 3.3439 respectively. These values 

indicate that the presence of hubs is more pronounced in the Mars Pathfinder than in the engine and the 

climate control system. 

The skewness measure has its limitations though. While the number of hubs in a distribution is likely to 

increase with the value of skewness, this relation is not guaranteed. For example, a skewness of zero and 

even negative skewness does not rule out the existence of a hub, because such distributions can still have a 

few highly connected components [5]. Thus, it is hard to translate specific values of skewness to a specific 

number of hubs, because the (right) skewness of a distribution can be increased in different ways.  

Because skewness aggregates in a single measure the overall tendency of the degree distribution to have 

hubs, and because QD quantifies precisely the fraction of hub components for a given D, we use both 

indicators to examine empirically how the presence of hubs relates to system quality. 

2.3 Degree distribution and hubs of a sample of software systems 

To study the relationship between the fraction of hub components in a system (𝑄𝑄𝐷𝐷) and the system’s 

quality, we examine the degree distribution of 105 software systems from the Apache foundation. Figures 
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4a and 4b show the minimum, average, and maximum cumulative degree distribution curves for the systems 

in our sample. Because the connections in our sample are directional, we distinguish between in-degree 

(Figure 4a) and out-degree (Figure 4b) distributions (see also [1-3]). First, we remark that there is significant 

variation in the degree distributions in our sample for any given 𝐷𝐷 . Such variation allows us to test 

empirically the relationship between the fraction of hub components, 𝑄𝑄𝐷𝐷 (for any given 𝐷𝐷), and system 

quality. Second, for both in- and out- degree perspectives, the top 20% most-connected components (𝑄𝑄𝐷𝐷 =

0.20) in all the systems in our sample have normalized degree greater than D = 0.15. To put the value of D 

= 0.15 in perspective, note that the mean of the average normalized degree of all the applications in our 

sample is 0.02. Hence, the normalized degree (in any direction) of a potential hub component is at least 

seven times larger than the mean normalized degree in the average system in our sample (and more than 

twice the mean normalized degree of the system with the largest average normalized degree in our sample).  

We also fitted power law forms to the degree distributions and found that about 90% of the systems did 

not follow a “pure” power law (i.e., about 90% of the systems did not pass a Chi-square test, at the 5% 

level, testing whether their degree distribution followed a power law). Hence, using the power-law 

coefficient, 𝛾𝛾, as a measure for the number of hubs was inappropriate in our sample. In contrast, the 

skewness values of all the distributions indicate our systems are all right-skewed; hence we use skewness 

as an alternative indicator of the presence of hubs.  

The patterns of degree distributions observed in our sample are consistent with [3], which found 

evidence of power law regimes with cut-offs in the degree distributions of a single release of two large 

open-source software systems (the Linux operating system kernel and the MySQL relational database). 

They found that the distributions of incoming links (equivalent to outgoing “function calls”) had 

significantly smaller cut-offs (faster decaying tails) than the distribution of outgoing links (equivalent to 

incoming “function calls”).3 

                                                      
3 The degree distributions of these systems were based on directed graphs that represent calling relationships among 
subroutines within each of these systems [3]. The convention used by [3] with respect to the directionality of the link 
between two nodes is reversed from the one used here. Our convention is similar to the one used in previous work that 
models software architectures using DSM representations [13,34,47] by which the direction of the link follows the 
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(a) In-degree      (b) Out-degree 

Figure 4. Cumulative degree distribution curves for our sample of 105 systems 
 

3 Hypotheses  

In this section we integrate previous findings in engineering design, complex networks and software 

development to formulate two hypotheses that relate characteristics of a system’s degree distribution to its 

level of defects. Previous research (e.g., [3, 17, 22]) has suggested that system architectures characterized 

by the presence of hubs are likely to benefit the design process in various ways and thus have fewer defects 

than architectures barely using hubs. 

Hubs can have two types of integrative roles depending on whether their components “use” or “get used 

by” other components in the system [1, 11, 34]. Hence, the in-degree of component 𝑖𝑖 counts the number of 

other components that use it, and the out-degree of component 𝑖𝑖 counts the number of other components 

that get used by it. Previous research in the complex network literature has not only shown that complex 

product development networks exhibit significant asymmetry in their degree distributions [1-3] but also 

that such an asymmetry can moderate the effects of hubs on the generation of defects in a system [3]. 

In-degree hubs can serve as a “platform” upon which many other components build their functionality. 

Examples include the manifold that distributes material flows to many other components in a chemical 

plant, the memory chip in a computer which is used to process signals requested by many other components, 

and the basic software functions (such as memory management, scheduling, and 

                                                      
direction of the “function call” (i.e., in-degree counts the number of incoming function calls). Such a difference in 
convention does not affect our analysis.  
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communication/networking) that get called by many other functions in a software application.  An out-

degree hub provides a “common-entry point” to the system because it provides a path to many other 

components. Examples of out-degree hubs are the control panel of an automobile, the “black box” of an 

airplane, and the user-interface components of software applications. 

While in-degree and out-degree hubs are functionally different, they both serve as integrative 

mechanisms in the product architecture domain. A set of components playing a platform role (in-degree 

hub) tends to force adherence to a common protocol for interface management. This is consistent with the 

benefits of bus modularity [8, 35]. The presence of a platform-type hub routes function requests through 

the same set of components, which reduces the need for component-to-component coordination [27]. This 

reduces the chances of omissions or coordination pitfalls that could potentially lead to defects in the system 

[27, 36]. Similarly, the presence of “single-entry point” components (out-degree hub) may facilitate the 

organization of functional requirements into different segments [37]. Hence, from an engineering design 

perspective, the use of this type of hub can facilitate the internal definition of modules, which hinders the 

generation of defects by enabling the creation of more modular architectures [37]. 

Our arguments pertaining to system architecture are reinforced by organizational considerations. The 

organization often mirrors the technical structure of systems [36, 38-40]. Thus, systems that make a 

considerable use of hubs are likely to have development actors that act as coordination brokers and facilitate 

critical information flows among other developers [2]. Consistent with the notion of betweenness centrality, 

developers of the hub components centralize and distribute information during the development, which 

enables coordination among the otherwise disconnected actors [1, 39]. Moreover, developers responsible 

for hub components tend to invest greater efforts in interface management and standardization [41] to 

reduce the chances of critical interfaces going unattended, which can lead to costly rework or quality issues 

[36, 39]. 

In addition to being integrative mechanisms, hubs are also salient candidates for component reuse [42].  

Because hubs access (or get accessed) by many components in the system, they are considered important 

elements when designing the platform for a family of products. Hence, components that form part of a hub 
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are more likely to be part of a product family, which attracts additional organizational attention and 

resources to scrutinize their quality [43-45]. Even within a single long-lived system, such as software 

products, hubs are more likely to be reused than components with low degree [34]. Again, in such a case 

the more highly connected components (hubs) are more likely to be scrutinized and debugged over several 

product generations [34, 46]. 

Having highly scrutinized and reliable hubs is important for those systems in which hubs may build 

efficient redundancy: if a component fails, then hubs can re-route the dependency from the failed 

component to prevent overall system failure [3, 22]. This is consistent with previous work in complex 

networks, which has suggested that complex engineered systems showing a right-skewed degree 

distribution are more robust (both from a static and dynamic perspective) to random node failures, because 

such a local failure is less likely to propagate and bring the whole system down [22]. Such resiliency is 

attributed to the presence of hubs and is particularly salient in new product development networks. As 

shown by [3], new product development networks with inhomogeneous degree distributions of tasks are 

less likely to have unresolved tasks, which could lead to product defects. 

Note that we are not arguing for a positive relationship between component degree (i.e., mere direct 

connectivity) and lower levels of defects. Rather, grounded in previous findings, we suggest that the 

presence of hubs provides a net benefit (reflected in lower levels of defects for the system) because they 

facilitate the design of other components in the system, some of which might be critical to deliver specific 

product functionality. (For evidence of this concerning the aircraft engine in Figure 3, see [27]; for evidence 

of this concerning software products, see [47].) 

Considering the integrative and reusability benefits associated with the presence of hubs, we posit the 

following baseline hypothesis to test empirically: 

H1: Systems architectures characterized by the presence of hubs are likely to be less defect-prone. 

That is: 

a) Systems with right skewed in-degree and out-degree distributions are more likely to have a 

below-average number of defects. 
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b) Systems with above-average fractions of in-degree and out-degree hub components (QD,in and 

QD,out) are more likely to have a below-average number of defects. 

Although H1 suggests that increasing the fraction of hub components will improve system quality, 

we argue that there are limits to the benefits associated with the presence of hubs, which would imply an 

optimal fraction of hub components that minimizes the number of defects in a system. 

The limits to using hubs are associated with the limited capacity of development actors to process 

information [1-3, 48]. Because humans have a limited capacity to provide information to and receive 

information from others, designing components with disproportionally connected components tests the 

bounded rationality of certain people in the organization [1-3, 21, 48]. Moreover, because developers are 

likely to have a greater capacity to provide information to others (broadcasting information) than to receive 

and process it, Braha and Bar-Yam [1-3] suggested that the significant asymmetry in degree distributions 

observed in new product development networks is (in part) a consequence of the bounded rationality 

argument originally put forward by Simon [48]. 

There are also limits to the number of hubs. From an organizational viewpoint, since using more 

hubs implies the inclusion of more components with significantly more interfaces to coordinate, they add a 

significant coordination cost to the organization [49]. Although the organization can afford to have some 

people specialized in handling interfaces across organization and system boundaries [39], there is a limit to 

the number and size of such highly communicative groups that are focused on integration at the expense of 

people focused on implementing specific product components. 

The reusability argument associated with hub components also gets diminishing returns as the use 

of reusable (standardized) hub components becomes excessive. With a given level of system functionality, 

the use of more reusable (standardized) hub components increases the risk of them fulfilling system-specific 

functions [50]. However, because such reusable components are designed to fulfill generic (rather than 

specific) functions, their “misuse” leads to unnecessary complexity in the system that may in turn cause 

defects [43]. 
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In sum, because there are limits to the benefits associated with the presence of hubs as the fraction 

of hub components increase, we posit our second set of hypotheses to test: 

H2a: There is an optimal fraction of in-degree hub components (QD,in) that minimizes the expected 

number of defects in the system. 

H2b: There is an optimal fraction of out-degree hub components (QD,out) that minimizes the 

expected number of defects in the system. 

 

4 Empirical Evidence 

To test our hypotheses, we studied open-source, Java-based software applications from the Apache 

Software Foundation (http://www.apache.org/), one of the largest, best-established, and most widely 

studied open-source communities of developers and users who share values and a standard development 

process [51]. We examine the architecture of software products for three reasons:  (a) they are complex, (b) 

they exhibit fast change rates (enabling longitudinal study), and (c) they offer (through their source code) 

an efficient, reliable, and standardized medium to capture their architecture. Thus, as fruit flies facilitate 

studies of biological evolution, software systems allow for the study of complex systems and the relation 

between their inner characteristics and quality. 

Initially, we identified 69 Java-based development projects at the Apache Software Foundation in mid-

2008. An effective examination of the causal relationship between architectural characteristics and quality 

requires a longitudinal data set, so we only considered products for which we could obtain related product 

and bug data for successive major releases. Such filtering left us with a set of 105 releases representing 16 

products with an average of 6.6 major releases (or versions) each. (Our sample can be extended to 122 

releases if we exclude two organization-related control variables from the analysis. Our overall results hold 

with this extended sample.) The product sizes in our sample of 105 releases range from 29 to 1,282 

components (𝑥̅𝑥 = 279, 𝑠𝑠 = 216). 

We capture the architecture of each product release with a readily available tool called LDM (by Lattix, 

Inc., www.lattix.com), which automatically extracts the dependency structure of each system from its 

http://www.apache.org/
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source code. We represent each product release in a product DSM and use this as the basis for calculating 

the degree distribution and other architectural variables (see [14, 15] for details).  

Concerning the types of dependencies captured in our product DSMs, if the source code in a Java class 

(i.e., a product component) refers to another class, then we say that the class is dependent on the class being 

referred to. Specifically, we capture the following types of syntactic dependencies:  invocations (static, 

virtual and interface), which allow for various types of method calls; inheritances (extensions and 

implementations), which allow a class to extend or define new behaviors; data member references, which 

refer to the field of a class; and constructs, a method call for creating an object. We include these 

dependencies because they are generally integral to the design of the system and because developers create 

them deliberately. Although our approach is consistent with the majority of prior research in relying on 

static dependencies (e.g., [13, 52]), we acknowledge that we do not capture some types of data or logical 

dependencies, in particular dynamic runtime dependencies (such as memory use), which are also likely to 

affect software quality [53, 54]. Moreover, the automated methods for extracting dependencies are highly 

reliable and replicable for the types of static design-related dependencies they do address when compared 

to methods for models of hardware systems and design processes (e.g., [6, 11, 27, 36, 55]), where the 

dependencies must be gathered manually and/or subjectively. 

4.1 Variables 

To test our hypotheses we need to measure for each product in our sample a key dependent variable of 

interest (namely, the number of defects per product release), a predictor variable (for instance, the fraction 

of hub components of each product release from either an in-degree (𝑄𝑄𝐷𝐷𝑖𝑖𝑖𝑖 ) or out-degree (𝑄𝑄𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜 ) 

perspective), and a set of control variables that help us prevent confounding effects and spurious 

regressions. Based on these variables our regression model estimates the effect of the predictor variable on 

the dependent variable in the presence of the control variables.  

4.1.1 Dependent Variable: Number of defects per product 

Number of defects associated with version s of product i (𝑦𝑦𝑖𝑖𝑖𝑖). Our dependent variable counts all the 

defects (bugs) that have been formally logged into the project’s bug tracking systems and attributed to 
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version 𝑠𝑠 of product 𝑖𝑖. Typically, the identification of a formally reported defect is carried out by developers 

or users (with confirmation by developers) after the product has been released. However, in some occasions 

bugs are attributed to version s before its official release. Our dependent variable counts all of these bugs 

as long as they are explicitly assigned to version s.   

4.1.2 Predictor Variables 

Skewness (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 ). We use the most common measure of skewness used in probability and 

statistics [56], the distribution’s third standardized moment: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 =
1
𝑁𝑁∑ �𝑥𝑥𝑗𝑗−𝜇𝜇�

3𝑁𝑁
𝑗𝑗=1

𝜎𝜎3
     (1) 

where 𝑥𝑥𝑗𝑗 is the degree of component j of version s of product i; µ is the mean degree of  version s of product 

i, σ is the corresponding standard deviation around the mean degree, and N is the number of components in 

version s of product i. The measure is positive when the right tail is more pronounced than the left tail, 

indicating that the distribution is right-skewed and negative if the left tail is more pronounced than the right. 

In our sample, all the product releases exhibited various degrees of positive skewness, indicating that they 

all were to some extent right-skewed. 

Fraction of hub components (𝑄𝑄𝐷𝐷,𝑖𝑖𝑖𝑖). Based on the cumulative normalized in-degree (or out-degree) 

distribution, we measure the fraction of hub components in version 𝑠𝑠 of product 𝑖𝑖 that have a normalized 

in-degree (or out-degree) greater than or equal to 𝐷𝐷.  Since normalized in-degree (𝐷𝐷𝑖𝑖𝑖𝑖) and out-degree 

(𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜) can be theoretically defined in the range [0,1], we determine 𝑄𝑄𝐷𝐷𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 (and 𝑄𝑄𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖𝑖𝑖) for each 0.05 

increment of 𝐷𝐷𝑖𝑖𝑖𝑖 (and 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜) provided that 𝑄𝑄𝐷𝐷𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 (and 𝑄𝑄𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖𝑖𝑖) is equal to (or smaller than) 0.20 (which is 

the Pareto law threshold we exogenously imposed to identify hubs).  

4.1.3 Control Variables 

Including a relevant set of control variables ensures that our hypothesis testing rules out possible 

alternative explanations that could be confounded with the effect of our dependent variables. We include 

two sets of control variables. First, we control for exogenous, non-architectural features of the product that 

are likely to affect the generation of defects. Our non-architectural controls, described in Table 1, neutralize 
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the potentially confounding effects of program size and complexity (e.g., source lines of code and 

cyclomatic complexity) as well as effects that influence the discovery process of defects (e.g., the time to 

the next release).  Second, we control for architectural characteristics as functions of the interaction patterns 

in each product release (see [57] for various measures of complexity in engineered systems).  Table 2 

provides a description of our architectural controls. 

 
Table 1:  Description of non-architectural control variables 

Non-architectural Controls Description 

Source lines of code 
(𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖) 

Since both the number of defects as well as the degree distribution may be a function of the 
overall system complexity, we need to control for it. The overall complexity of a system is a 
function of the amount of information it carries. One of the most widely used metrics to capture 
the raw complexity of a software product is its number of source-code lines [58, 59]. We 
measure the number of source lines of code (in “kilolines”) with the readily available JHawk 
tool (www.virtualmachinery.com), which counts the number of statements (excluding 
comments) in each method of each component of version 𝑠𝑠 of product 𝑖𝑖. 

Average cyclomatic complexity 
(𝐴𝐴𝐴𝐴𝐴𝐴_𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖) 

Since the presence of defects in the system can be a function of the internal complexity of the 
components in the system, we control for the average component complexity with one of the 
most widely accepted measures in the software domain. Cyclomatic complexity is the minimum 
number of linearly independent paths in the control flow graph of a software program [60]. 
Cyclomatic complexity is typically used to identify the methods of a program that would be 
harder to test and build [58, 60]. We use the JHawk tool to calculate the cyclomatic complexity 
of all methods in our sample. We then average cyclomatic complexity of all methods in version 
𝑠𝑠 of product 𝑖𝑖. 

Age of product at version s 
(𝐴𝐴𝐴𝐴𝐸𝐸𝑖𝑖𝑖𝑖) 

The time a component has been in existence may influence both bugs (as it may be debugged) 
and degree distribution (as it may attract more links). The age of the product is measured by the 
number of days since its development began. This assumes that the application is officially 
“born” on the date of the first release available (as indicated in the release notes) and then ages 
with successive releases.  

Days since last release 
(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐸𝐸𝑖𝑖𝑖𝑖) 

The time between successive releases varies within and across products and directly influences 
the likelihood a bug is discovered, so it is important to control for the time span between the 
previous release and the release of version 𝑠𝑠. 

Days to next release 
(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷_𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑖𝑖𝑖𝑖) 

This is the time between the current version s and the next release (𝑠𝑠 + 1). The longer this time, 
the higher the probability that bugs will be discovered, because it corresponds to when the 
application is most actively scrutinized by testers and users. 

Newness of application at 
version s 
(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑖𝑖𝑖𝑖) 

Both new features (added functionality) and incremental improvements (modifications to 
existing functionality) add uncertainty and complexity to the structure of a product, influencing 
the generation of bugs. Using information from the release notes of each product release, we 
count the “new features” and “improvements” items in such notes as an indicator of the newness 
of version s of application i. 

Implicit bugs 
(𝐼𝐼𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐵𝐵𝐵𝐵𝐵𝐵𝑆𝑆𝑖𝑖𝑖𝑖) 

Some bugs reported in the bug-tracking system are not explicitly assigned to a specific version, 
so they are not accounted for by our dependent variable. We control for the existence of these 
“implicit” bugs because their discovery may influence the discovery of bugs that are explicitly 
assigned to version 𝑠𝑠. We assign an “implicit” bug to the version that was most recently released 
when the bug was entered into the bug-tracking system. 

Cumulative number of changes 
(CUM_CHANGESis) 

Because previous work in information systems has found positive association between “churn” 
metrics (such as the number of changes made to product components) and software failures [61, 
62], we control for the cumulative number of changes associated with components of version 𝑠𝑠 
prior to its release. 
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Average breadth of a change 
(AVG_BREADTH_CHANGEis) 

Because our sample is longitudinal, it is important to control for the “decay” of the source code 
over time (i.e., changes in the source code tend to involve more components as the product gets 
older) [63]. We control for this by measuring the average number of components in version s 
that have been modified in version s due to either bug fixing, product improvements, or product 
new features. 

Average interface classes usage 
(𝐴𝐴𝐴𝐴𝐴𝐴_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖) 

In object-oriented programming, as enabled by Java, the use of “interface-type” components is 
customary to decouple modules. We aim to control for the ability of developers to properly use 
“interface-type” classes to handle dependencies across modules. To do so, we use the 
normalized metric of “distance” proposed by Martin [64, p. 267], which assesses developers’ 
ineffectiveness at grouping interface-type components into potentially stable modules. See [64, 
p. 264] for a detailed description.  We again use the LDM tool to calculate this metric directly 
from the JAR files of each product release in our sample. 

 

Table 2:  Description of architectural control variables 

Architectural Controls Description 

Number of nominal modules 
(𝑁𝑁𝑁𝑁𝑁𝑁_𝑁𝑁𝑁𝑁𝑁𝑁_𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑖𝑖𝑖𝑖) 

This measure counts the number of component-based modules in each product release. The 
products in our data set are complex systems formed by interrelated components. To manage 
this complexity, system architects group the components into hierarchically organized modules. 
Typically, modules aggregate components that collectively perform certain functions. 

Propagation cost 
(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖) 

The presence or absence of direct and indirect dependencies between the components of a 
complex system can create defects [7, 11, 13, 57]. We control for the overall connectedness of 
the components in a product release by calculating its propagation cost as defined by [13].  

Intrinsic cyclicality 
(𝑃𝑃𝐼𝐼,𝑖𝑖𝑖𝑖 ) 

In complex systems in which the dependencies are directional (such as the function calls in 
software products, and the energy, material, or information flow in hardware products), some 
components might be connected in a cyclical manner forming “component loops.”  Sosa et al. 
[15] showed that one particular type of component loop called intrinsic loops influences product 
quality most significantly. We measure intrinsic cyclicality as the fraction of components in 
version s of product i involved in intrinsic component loops. 

Number of component loops 
(𝑁𝑁𝑁𝑁𝑁𝑁_𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑆𝑆𝑖𝑖𝑖𝑖) 

Because intrinsic cyclicality does not explicitly control for the number of intrinsic component 
loops in the system, we include a control for it. 

Average clustering coefficient 
(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖) 

Because previous research in information system has found that the density of connections 
surrounding components (i.e. the extent to which components directly connected to a focal 
component are connected among themselves) may influence coordination breakdowns and 
software failures in various ways, we include a control for it [53]. We calculate a measure 
equivalent to the local clustering coefficient used in the small world literature [20], which 
measures the fraction of a component’s neighbors that neighbor each other. We then average 
these component-level coefficients over the components in the application. Observe that 
because we are interested in whether two components are connected or not (neighboring 
components), we symmetrize our DSMs for the purpose of calculating this measure. Doing so 
allows us to calculate the clustering coefficient using non-directed links as done by [20]. 
Nonetheless, one can also calculate a clustering coefficient as a fraction of transitive triplets for 
the directed DSMs. 

In-Out degree correlation 
(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖) 

Pearson correlation between the in- and out- degree of the components of each product release 
in our sample. Because simulation-based research in complex networks has shown that the 
correlation between in- and out-degree distribution may influence the risk of development tasks 
to be unresolved (which can also lead to the generation of defects) [3], we control for two types 
of correlations, of which this is the first. 

Out-out neighboring degree 
correlation 
(𝑂𝑂𝑂𝑂𝑂𝑂 −
𝑂𝑂𝑂𝑂𝑂𝑂_𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁_𝐷𝐷𝐷𝐷_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖
) 

Second, and also consistent with [3], we control for the out-out degree correlation between 
neighboring components (i.e., pairs of interconnected components). This measure correlates the 
number of outgoing links (equivalent to incoming design dependencies) between connected 
nodes in a network. (Note that because our convention of link directionality is reversed from 
the one used by [3], our measure corresponds to the in-in neighboring degree correlation 
proposed by [3].) For robustness, we also tested our hypotheses with a similar measure based 
on in-in neighboring degree correlation and obtained a similar pattern of results. 
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4.2 A statistical model to predict defects in the system 

We estimate a regression model that predicts the number of defects in each product release. Because our 

dependent variable (𝑦𝑦𝑖𝑖𝑖𝑖) exhibits skewed count distributions (which take only nonnegative values), a linear 

model (estimated with standard ordinary least-squares regressions) could lead to inefficient and biased 

estimates and is thus inappropriate. Poisson-like regression models, in contrast, have been developed to 

explicitly model the count nature of dependent variables [65]. Because the variance of our dependent 

variable is significantly larger than its mean, negative binomial regression models provide a more accurate 

estimate of the standard errors of the coefficient estimates than a basic Poisson regression [65, 66]. Finally, 

because of the panel structure of our data, we use panel data regression procedures. We therefore estimate 

a model of the form [65, p. 279].  

                                                        𝐸𝐸[𝑦𝑦𝑖𝑖𝑖𝑖|𝑥𝑥𝑖𝑖𝑖𝑖, 𝛼𝛼𝑖𝑖] = 𝛼𝛼𝑖𝑖 𝑒𝑒�𝑥𝑥𝑖𝑖𝑖𝑖
′ 𝛽𝛽�    (2) 

For estimation purposes, we use the Stata command xtnbreg with both application- and year-specific 

fixed effects. The 𝛽𝛽-coefficients for our predictor variables as well as for the control variables are shown 

in Tables 3, 4, and 5 below. The coefficient 𝛽𝛽𝑗𝑗 quantifies the change in the expected number of defects if 

the 𝑗𝑗th regressor changes by one unit. A significantly positive (negative) 𝛽𝛽𝑗𝑗 coefficient indicates that, all 

else being equal, an increase (decrease) in regressor 𝑗𝑗 increases (decreases) the expected number of defects 

in the system. For example, a significantly negative coefficient 𝛽𝛽𝐷𝐷𝑖𝑖𝑖𝑖 of variable 𝑄𝑄𝐷𝐷𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖  would indicate that, 

the expected number of defects of a system with above-average percentage of components with normalized 

in-degree 𝐷𝐷𝑖𝑖𝑖𝑖, is significantly below the average number defects in the sample (all else equal). This result 

would be in line with our hypothesis H1. 

The 𝛼𝛼𝑖𝑖 are product-specific fixed effects. These effects permit observations of the same product to be 

correlated across versions, thereby allowing the model to incorporate serial correlation. These fixed effects 

capture any time-invariant, unobserved, product-specific features and thus effectively control for any such 

factors which we could not explicitly measure such as the “culture” or “baseline experience” of the 

development team of each product. Finally, because software development technologies may change 
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significantly from year to year, and such developments might affect the generation of defects across all of 

the products, we include indicator variables for the year of each release. 

4.3 Testing our hypotheses 

Table A1 (in the appendix) shows descriptive statistics and pair-wise correlations between the variables 

included in the analysis. As expected, some of the architectural controls (such as propagation cost, intrinsic 

cyclicality, and clustering) show significantly high levels of positive correlation. In-out degree correlation 

is not only positively correlated with architectural variables but also negatively correlated with out-out 

neighboring correlation. Both in- and out-degree skewness are positively correlated, indicating that the 

variations in asymmetry of the in- and out-degree distributions are positively associated. Finally, in- and 

out-degree skewness are not significantly correlated with QD,in and QD,out, respectively, for values of D = 

0.25 (which is in the mid-range of D values used in our analysis). This suggests that skewness and QD 

capture complementary (rather than redundant) aspects associated with the presence of hubs in a system.4  

We estimate two sets of regression models to test our hypotheses. Tables 3 and 4 show the standardized 

coefficient estimates (𝛽𝛽𝚥𝚥� ) of the models predicting the expected number of defects.5 Table 3 presents two 

baseline models as well as the models used to test hypothesis H1. Table 4 reports the models used to test 

hypothesis H2.  

Model 1, in Table 3, includes all our non-architectural controls and a first set of architectural controls. 

Model 2 adds the other three architectural control variables (clustering and two degree correlation 

variables). Because architectural variables are highly correlated among themselves, we estimate variance 

                                                      
4  The lack of significance in correlation between QD and skewness can be explained by the following thought 
experiment. Assume a network with non-directed dependencies and a certain (right-skewed) degree distribution. In 
addition, choose a D to define QD. How are both skewness and QD likely to change if a new node is added to the 
network? If the newly added node has a degree that is smaller than the average mean, then skewness will decrease and 
QD will decrease (or will stay at zero if the original QD = 0). If the newly added node has degree greater than the mean 
degree but smaller than D, then skewness will increase whereas QD will decrease (or will stay equal to zero if the 
original QD = 0). Finally, if the newly added node has degree greater than or equal to D, then skewness will increase 
and QD will also increase. Hence, the actual relationship between skewness and QD is an empirical question, which in 
our dataset does not exhibit a significant correlation for a wide range of D. 
5 Because the variables are measured using very different unit scales, and to facilitate the interpretation of the estimated 
coefficients, we standardize each variable to its z-score before entering it into the regressions [67]. The z-score of a 
variable is obtained by subtracting its mean value and dividing it by its standard deviation.  
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inflated factors (VIF) and found that intrinsic cyclicality exhibited VIF superior to the acceptable threshold 

of 10 [68]. Hence, we exclude it from our baseline model, although our results are substantially similar if 

including intrinsic cyclicality in the baseline model. Moreover, although we use Model 2 as the baseline 

model, the results with respect to our hypotheses are similar using Model 1 as the baseline model. Model 2 

is also consistent with [3] by showing that both in-out degree correlation and out-out neighboring degree 

correlation are positively associated with defects.  

Models 3, 4, and 5 test hypothesis H1, which predicts that the presence of hubs in a system is associated 

with fewer defects. Models 3 and 4 show a significant, negative coefficient for the skewness measure of 

the in- and out-degree distributions, respectively. This indicates that the more right-skewed the degree 

distributions of a system, the fewer the defects they are likely to exhibit. Model 5 includes the two measures 

of skewness and shows that out-degree skewness is significant (-0.999, p < .001), whereas in-degree 

skewness is not (0.046, p < .867). This is not entirely surprising given the significant, positive correlation 

between these two measures (0.46, p < .0001). Most of the effect of in-degree skewness on the dependent 

variable coincides with part of the effect of out-degree skewness. As a result, in our sample, it is not possible 

to fully separate out the effect of in-degree skeweness from the effect of out-degree skewness.  

Because the fraction of hub components (QD) can be defined with respect to different normalized degrees 

(D), we test hypothesis H1 for many possible definitions of (QD) by systematically varying 𝐷𝐷 in increments 

of 5% (𝑄𝑄𝐷𝐷,𝑖𝑖𝑖𝑖 ∈ {𝑄𝑄0.95,𝑖𝑖𝑖𝑖, … , 𝑄𝑄0.10,𝑖𝑖𝑖𝑖, 𝑄𝑄0.15,𝑖𝑖𝑖𝑖}. We consider our predictor variable QD for values of D greater 

than 0.15 in order to ensure that hubs comprise no more than the top 20% most connected components in a 

system. Models 6 and 7, in Table 3, show the coefficient estimates for in-degree hubs corresponding to Din 

= 0.15 and Din = 0.25, whereas models 8 and 9 show coefficient estimates for out-degree hubs corresponding 

to Dout = 0.15 and Dout = 0.35. These values of D define the range of D in which the QD show a significant 

linear relationship with the number of defects. Because QD is uncorrelated with skewness, we include both 

in- and out-degree skewness in all of these models. These models all exhibit negative and significant 

coefficient estimates for QD, indicating that applications in our sample with above-average fractions of hub 

components are significantly associated with a below-average number of defects. Considering Model 6, for 
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instance:  the significant, negative coefficient of 𝑄𝑄𝐷𝐷𝑖𝑖𝑖𝑖 (-1.103, 𝑝𝑝 < 0.001) indicates that a one standard 

deviation increase in the fraction of components with normalized degree greater than or equal to 0.15 

correlates with 67% fewer defects (1 − 𝑒𝑒−1.103 = 0.67). Overall, models 6-9, in Table 3, provide support to 

hypothesis H1b. The models in Table 4 provide further support for hypothesis H1 over a wider range of D 

by also finding an optimal fraction of hub components (QD) that is above the average value of QD. 

Include Table 3 here 

4.4 Finding an optimal fraction of hub components 

According to hypothesis H2, it would be unrealistic to expect that increasing either 𝑄𝑄𝐷𝐷𝑖𝑖𝑖𝑖  or 𝑄𝑄𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜 

without limits would yield a system with ever-fewer defects. Rather, we expect to find an optimal level of 

𝑄𝑄𝐷𝐷𝑖𝑖𝑖𝑖 (or 𝑄𝑄𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜) above which further increases would be detrimental. We test for the existence of an optimal 

level of 𝑄𝑄𝐷𝐷 by adding a quadratic term of 𝑄𝑄𝐷𝐷 to our regression models.  Hence, a model that shows both a 

negative and significant coefficient of 𝑄𝑄𝐷𝐷 and a positive and significant coefficient of 𝑄𝑄𝐷𝐷2 would indicate 

that there is a level of 𝑄𝑄𝐷𝐷 (within the range of data in our sample) that minimizes the expected number of 

bugs. Such a model would suggest that the relationship between 𝑄𝑄𝐷𝐷 and our dependent variable is U-shaped 

(all else constant). Table 4 shows the coefficients for the models that improve their goodness of fit 

significantly after adding the quadratic term of 𝑄𝑄𝐷𝐷𝑖𝑖𝑖𝑖 and 𝑄𝑄𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜, respectively.  

Include Table 4 here 

The first five models in Table 4 provide empirical evidence for a U-shape relationship between 𝑄𝑄𝐷𝐷𝑖𝑖𝑖𝑖 

and our dependent variable for values of 𝐷𝐷𝑖𝑖𝑖𝑖 in the range 𝐷𝐷𝑖𝑖𝑖𝑖 ∈ {0.15,0.25,0.30,0.40,0.45}. This provides 

empirical support to hypothesis H2a. For instance, Model 1 suggests that those systems with normalized 

in-degree 𝐷𝐷𝑖𝑖𝑖𝑖 ≥ 0.15 are likely to have the least number of defects if 9.0% of components are involved in 
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hubs.6 To put the value of 9.0% in perspective, note that the average value of 𝑄𝑄0.15𝑖𝑖𝑖𝑖 in our sample is 2.3% 

and the maximum value of 𝑄𝑄0.15𝑖𝑖𝑖𝑖 is 13.5%.  

To illustrate better the regression results shown in Table 4, Figure 5a plots 𝑄𝑄𝐷𝐷𝑖𝑖𝑖𝑖 as a function of 𝐷𝐷𝑖𝑖𝑖𝑖. In 

addition to the minimum, average, and maximum application of 𝑄𝑄𝐷𝐷𝑖𝑖𝑖𝑖, we plot an “ideal” curve which joins 

the optimal values of 𝑄𝑄𝐷𝐷𝑖𝑖𝑖𝑖 for the values of 𝐷𝐷𝑖𝑖𝑖𝑖 for which we could find a significant optimal value of 𝑄𝑄𝐷𝐷𝑖𝑖𝑖𝑖. 

The existence of the ideal curve above the average curve is fully in line with the prediction of hypothesis 

H2a. Note that the ideal curve is above the average curve even for those 𝐷𝐷 for which we could not find a 

significant linear effect in our first analysis, implying that having an above-average fraction of components 

with high in-degree improves the quality of the system, which further bolsters H1a. 

As for the out-degree perspective, we found a significant optimal level of 𝑄𝑄𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜 for values of 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜 =

0.15 , 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜 = 0.20  and 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜 = 0.30  (see Models 6-8 in Table 4). This provides empirical evidence 

supporting hypothesis H2b. Figure 5b plots the optimal 𝑄𝑄𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜, or the “ideal” curve, as a function of 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜. 

Again, the ideal curve is above the average curve, which is line with H1b. 

 

(a) In-degree      (b) Out-degree 
Figure 5. Graphical representation of regression results  

 

                                                      
6 To see this, note that equalizing to zero the partial derivative of 𝑦𝑦𝑖𝑖𝑖𝑖 with respect to 𝑄𝑄0.15𝑖𝑖𝑖𝑖 in Model 1 yields the z-
score of 𝑄𝑄0.15𝑖𝑖𝑖𝑖 = 2.105, which minimizes 𝑦𝑦𝑖𝑖𝑖𝑖, all else constant. To obtain the value of 9.0%, multiply such a z-score 
by the standard deviation and add its mean value, 2.105 ∗ 0.032 + 0.023 = 0.09. 
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Overall, our statistical analysis provides substantial empirical evidence that systems with in-degree and 

out-degree distributions with “thicker than average” right tails (i.e., above-average fraction of hub 

components) are more likely to have fewer defects. Interestingly, we found that there is a limit on the 

improvement that increasing the fraction of hub components (i.e., the thickness of the right tail of the degree 

distribution) has from both in-degree and out-degree perspectives. The fact that for certain values of 

normalized degree D we did not find an optimal level does not imply that such optimal levels do not exist; 

it only implies that the range of observations available in our sample was not large enough to provide 

statistical significance. 

5 Discussion 

This paper integrates work from the engineering design and complex network literatures to study how 

the degree distribution of a complex system relates to its quality. In particular, our work relates the fraction 

of hub components and system quality in an empirical (econometric-based) study. 

Our first set of results implies that systems with above-average fraction of hub components have a 

below-average number of defects. These results reinforce to system architects, designers, and managers 

the crucial role that hubs play in determining the quality of large, engineered systems: If better systems 

require a larger fraction of components playing the roles of hubs, then managers of complex system design 

projects should ensure the allocation of sufficient resources and attention to the design of such a crucial 

set of components. This is not trivial, because hubs continue to be a very small fraction of the components 

in the overall system and are therefore at risk of being allocated too few resources and too little attention, 

incommensurate with the crucial integration role they play and their effect on system quality. 

Our second set of results suggests that there is an optimal fraction of hub components with respect to 

system quality. Hubs provide net benefits reflected in better quality products, but using hubs excessively 

is detrimental to quality. Providing empirical support to that notion critically underlines the need to 

carefully deploy resources assigned to the design and maintenance of hubs. The good news is that the 

approach we use to find such an optimal level is generally applicable to any family of complex systems 

for which one can capture both architectural and quality features. 



 28 

5.1 The directionality of interfaces: In-degree versus out-degree 

Our analysis distinguished between the in-degree and out-degree distributions [1]. This is consistent 

with the fact that the interfaces between components in software systems are mostly directional, because 

they represent information flows [13, 69]. Although hardware systems have many symmetrical interfaces 

(most of which are spatial dependencies between components), they typically also contain many 

directional interfaces that are determined by energy, material, and/or information flow between 

components (see [11, 27] for examples of directional design interfaces among the components of the large 

aircraft commercial engine shown in Figure 1). 

From a degree distribution perspective, the distinction between in-degree and out-degree is important 

because they define two different types of hubs, platform and common-entry-point hubs. We found that 

the presence of both types of hubs seems to prevent defects in the system, presumably because they play 

integrative roles. This is interesting because previous work in the engineering design and management 

science literatures has recognized the benefits of using platform-type hubs when designing complex 

systems [43-45], but very little attention has been given to the benefits of using “common-entry point” 

hubs. Our results not only confirm the benefits of using platform-type hubs but also suggest that increasing 

the number of components playing “common-entry point” hubs can be a useful lever for designers and 

managers to improve the quality of complex systems. 

5.2 A general approach to determine the number of hubs in a complex system 

Our approach to test our hypotheses provides the basis for a more general, structured approach to find 

the appropriate number of hubs which minimizes the expected number of defects in a family of 

comparable systems. This general approach can be summarized in four major steps: 

1) Capture the system architecture of several comparable systems in terms of their components and 

interfaces. This step results in a network representation of each system in the sample to analyze. 

2) Determine the cumulative normalized degree distribution of each system in the sample as illustrated 

in Figure 1. If interfaces are directional (like in our empirical study), then distinguish in- and out-degree 

distributions. 
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3) For each system in the sample, capture the number of defects (or any other measurable quality 

metric) as well as any other potentially relevant metric that could explain system quality. Such metrics 

function as control variables to rule out spurious results. 

4) Estimate a regression model (analogous to the one defined in equation 2 that predicts system quality 

as a function of a set of relevant control variables as well as the fraction of hub components (𝑄𝑄𝐷𝐷). Then, 

for each value of normalized degree D (in increments of 5% or 10%), estimate the fraction of hub 

components (𝑄𝑄𝐷𝐷) that would minimize the number of defects. The result of this step would be summarized 

in an “ideal” curve analogous to the ones shown in Figures 6 and 7. Such curves can provide specific 

guidance to managers about the defect-minimizing number of hubs. 

This paper has shown how to apply this approach for a sample of complex software systems. But it 

could also apply to any sample of hardware systems, as long as both their architectures and quality have 

been measured for several versions of a sample of systems. Such practice is customary, for instance, in 

the auto industry where companies keep records of both architectural and quality measures of major 

subsystems for several versions of their car models. (See [36] for a study that relates the connectivity of 

automobile subsystems to their number of quality complaints). 

5.3 Research questions for future work 

Our findings raise a series of questions related to the notion of having hubs in a system. For example, 

in this paper, we treat all of the component interfaces equally. Yet we know from previous work [6, 11, 

27, 53] that interfaces vary in type and strength. Hence, we could define various types of hubs. Does hub 

type affect system quality? In software systems, for instance, previous work has identified important 

differences between syntactic and semantic/logical dependencies [53]. A promising area for future 

research is to investigate whether these differences moderate the hub-quality relationship. 

Our analysis is relevant for the design of complex, long-lived, adaptive engineered systems. We took 

advantage of the rapid evolution of software products as well as an objective and automated way to 

document their architecture and quality features to carry out our analysis in a sizable longitudinal sample. 

While we expect similar patterns of results with other complex systems in the automotive, aerospace, and 
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computer industries, in which the use of hubs is common, a verification of such claims is still outstanding. 

Future work could validate our approach for other types of complex systems. 

As for our main dependent variable, we measure quality by the absolute number of defects in the 

system. As such, we do not distinguish defects according to their type or severity. Is there a taxonomy of 

defects that helps designers of complex systems focus? Is the effect of the number of hubs on system 

quality moderated by the severity of the defect? Moreover, once a defect is discovered, how long does it 

take to fix it? Does the number of hubs influence the time to fix a defect?  Further research is needed to 

improve our understanding of how precisely hubs influence system quality. We hope this paper stimulates 

future research efforts in this promising area relevant for the design of complex systems. 
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Table 3. Negative Binomial Regressions Predicting Expected Number of Defects per Product (N = 105) 
 Model 1 

Controls 
Model 2 
Baseline 

 Model 3 
IN-

Skewness 

Model 4 
OUT-

Skewness 

Model 5 
IN & OUT 
Skewness 

 Model 6 
Din = 0.15 

Model 7 
Din = 0.25 

 Model 8 
Dout = 0.15 

Model 9 
Dout = 0.35 

SLOCis –0.291 -0.448 -0.381 0.116 0.102 -0.010 0.112 0.221 -0.049 
AVG_CCis 0.217*** 0.335*** 0.337*** 0.259*** 0.266*** 0.152 0.203*** 0.192* 0.121* 
AGEis  0.224 0.252 0.017 0.001 -0.022 0.004 0.032 -0.132 -0.109 
DAYS BEFOREis  –0.010 0.026 0.079 0.153 0.151 0.107 0.123 0.062 0.133 
DAYS AFTERis  0.362*** 0.294*** 0.442*** 0.469*** 0.486*** 0.368*** 0.428*** 0.417*** 0.376*** 
NEWNESSis  0.323*** 0.259** 0.240** 0.248*** 0.247*** 0.279*** 0.260*** 0.276*** 0.220*** 
IMPLICIT_BUGSis  –0.175 -0.297** -0.320*** -0.319*** -0.324*** -0.319*** -0.335*** -0.309*** -0.358*** 
CUM_CHANGESis –0.149 -0.152 0.052 -0.160 -0.124 -0.207 -0.272* 0.076 -0.041 
AVG_BREADTH_CHANGEis 0.171 0.118 0.104 0.212 0.207* 0.303*** 0.380*** 0.378*** 0.306*** 
AVG_INTERFACE_USAGEis –0.112 0.071 0.272 0.389** 0.407* 0.174 0.131 0.094 0.054 
NUM_MODULESis 0.132 0.246 0.227 -0.290 -0.258 -0.238 -0.381 -0.378 -0.345 
PROPAGATION COSTis –0.470* -0.274 -0.446* -0.352** -0.374* -0.157 -0.260* -0.415** -0.555*** 
Intrinsic NUM_LOOPSis –0.063 -0.033 -0.050 -0.206* -0.207* -0.298** -0.272** -0.320*** -0.241*** 
Intrinsic CYCLICALITY (PI,is) 0.552*         
CLUSTERINGis  0.026 0.267 -0.188 -0.119 -0.250 -0.336 0.073 -0.008 
In-Out degree correlationis  0.576** 0.644** 0.732** 0.713** 0.354 0.955*** 0.396 0.992*** 
Out-out neighboring degree 

correlationis  0.372** 0.302* 0.052 0.067 -0.081 -0.222 0.159 -0.332 
In-degree skewnessis   -0.544**  -0.092 0.079 0.063 -0.271 -0.107 
Out-degree skewnessis    -0.882*** -0.843*** -0.962*** -0.928*** -0.781*** -0.857*** 
QDin, is      -1.103*** -0.808***   
QDout, is        -1.183*** -1.943*** 
          Log likelihood –386.212 -381.457 -378.935 -374.460 -374.404 -368.924 -369.562 -367.900 -360.810 

Standardized coefficient estimates.   *< .1 ** < .05    *** < .01 (two-tailed).  
All models include product and year specific fixed effects. 
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Table 4. Negative Binomial Regressions Predicting a U-shape Relationship Between  
Fraction of Hub Components and Expected Number of Defects (N = 105) 

Standardized coefficient estimates.   *< .1 ** < .05    *** < .01 (two-tailed) 
All models include product and year specific fixed effects.  
 

 Model 1 
Din = 0.15 

Model 2  
Din  = 0.25 

Model 3 
Din  = 0.30 

Model 4 
Din  = 0.40 

Model 5 
Din = 0.45 

 Model 6 
Dout = 0.15 

Model 7 
Dout = 0.20 

Model 8 
Dout =0.30 

SLOCis -0.168 -0.047 -0.012 0.165 0.145 0.273 0.305 0.137 
AVG_CCis 0.249** 0.195*** 0.270*** 0.318*** 0.348*** 0.208*** -0.042 0.128* 
AGEis  -0.012 0.039 0.024 0.103 0.147 -0.375* -0.033 -0.123 
DAYS BEFOREis  0.112 0.105 0.091 0.139 0.091 0.174* 0.257** 0.087 
DAYS AFTERis  0.371*** 0.426*** 0.437*** 0.373*** 0.390*** 0.414*** 0.465*** 0.394*** 
NEWNESSis  0.307*** 0.251*** 0.251*** 0.264*** 0.260*** 0.226*** 0.265*** 0.272*** 
IMPLICIT_BUGSis  -0.406*** -0.348*** -0.362*** -0.345*** -0.345*** -0.128 -0.452*** -0.374*** 
CUM_CHANGESis -0.245* -0.268* -0.279* -0.293* -0.284** 0.172 -0.292** -0.039 
AVG_BREADTH_CHANGEis 0.375*** 0.338*** 0.300** 0.349*** 0.324*** 0.399*** 0.459*** 0.472*** 
AVG_INTERFACE_USAGEis 0.206 0.116 0.162 0.272 0.256 -0.252 0.194 0.041 
NUM_MODULESis -0.124 -0.315 -0.244 -0.402 -0.387 -0.543** -0.690*** -0.509* 
PROPAGATION COSTis -0.181 -0.169 -0.303* -0.413** -0.399** -0.162 -0.604*** -0.572*** 
Intrinsic NUM_LOOPSis -0.398*** -0.249** -0.187 -0.167 -0.197 -0.321*** -0.292*** -0.347*** 
CLUSTERINGis -0.296 -0.407 -0.044 -0.284 -0.349 -0.055 -0.025 -0.060 
In-Out degree correlationis 0.652* 1.062*** 0.772** 0.826*** 0.789*** -0.006 1.298*** 0.928*** 
Out-out neighboring degree 

correlationis 0.030 -0.216 0.004 0.064 0.177 -0.535** -0.315 -0.372 
In-degree skewnessis -0.048 0.098 0.126 0.278 0.299 -0.399* 0.167 -0.066 
Out-degree skewnessis -0.873*** -0.875*** -0.700** -0.832*** -0.850*** -0.717*** -1.186*** -0.891*** 
QD,is -1.790*** -1.266*** -0.991*** -0.942** -1.098*** -4.234*** -2.079*** -2.305*** 
QD,is  SQ 0.425** 0.257** 0.186** 0.157** 0.142*** 1.494*** 0.549*** 0.261* 

 
Log likelihood -365.932 -367.671 -370.679 -371.544 -370.086  -351.251 -360.743 -356.838 
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Appendix A. Table A1. Descriptive Statistics and Pairwise Correlations (N=105) 
 

 Mean STD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

1. Number of defects (yis) 82.8 127.6 1.00                     

2. SLOCis 19.4 17.9 .27 1.00                    

3. AVG_CCis 2.6 2.7 .03 -.07 1.00                   

4. AGEis  700.7 673.5 .26 .24 .07 1.00                  

5. DAYS BEFOREis  212.1 232.2 .36 .07 .03 .57 1.00                 

6. DAYS AFTERis  259.4 272.3 .36 .06 .17 .36 .35 1.00                

7. NEWNESSis  31.5 43.0 .53 -.04 .05 .10 .32 .17 1.00               

8. IMPLICIT_BUGSis  20.0 43.2 .25 .25 .01 .02 -.01 -.02 .11 1.00              

9. CUM_CHANGESis 1438.6 4532.4 .62 .17 -.04 .22 .36 .29 .66 .08 1.00             

10.AVG_BREADTH_ 
CHANGEis 3.9 3.2 .14 .06 -.15 .17 .18 .12 -.15 .15 .01 1.00            

11.AVG_INTERF_USEis 0.1 0.1 .27 .66 -.12 .19 .14 .17 -.04 .20 .12 .16 1.00           

12. NUM_MODULESis 26.6 25.9 .14 .75 -.08 .11 .02 .09 -.03 .44 .08 .08 .47 1.00          

13. PROPAGATIONis 16.3 9.3 .00 -.07 -.07 -.17 -.16 -.11 .14 -.18 .00 -.03 .04 -.22 1.00         

14.  Intrinsic 
NUM_LOOPSis 3.9 2.6 .29 .65 -.08 .42 .07 .11 -.09 .28 .13 .22 .31 .45 -.14 1.00        

15. Intrinsic cyclicality 
(PI,is) 19.1 10.6 .30 .30 -.01 .02 -.03 .00 .17 -.02 .03 .03 .27 .01 .78 .21 1.00       

16. CLUSTERINGis 0.2 0.0 .32 .05 .03 -.11 -.10 -.08 .29 -.01 .19 -.01 .10 -.22 .57 -.02 .67 1.00      

17. In-Out degree 
correlationis 0.0 0.1 .39 .34 .05 -.02 -.02 .04 .29 .15 .07 .07 .28 .22 .47 .19 .75 .51 1.00     

18. Out-out neighboring 
degree correlationis -0.0 0.1 -.06 .11 -.06 .13 .07 -.01 -.02 .16 -.02 .01 -.19 .13 -.33 .09 -.30 -.35 -.37 1.00    

19. In-degree skewnessis 4.8 2.5 .27 .38 -.12 .00 .17 .29 .18 .21 .40 .24 .38 .34 -.11 .28 .05 .09 .18 .07 1.00   

20. Out-degree skewnessis 3.1 2.3 -.08 .19 -.14 -.05 .14 .09 -.20 -.04 -.08 .15 .48 .07 .01 .03 .08 -.13 .09 -.29 .46 1.00  

21. Q25 INis 0.8 1.2 -.12 -.37 -.04 -.33 -.17 -.13 -.02 -.17 .03 .04 -.14 -.31 .40 -.30 .05 .37 -.10 -.37 -.02 -.05 1.00 

22. Q25 OUT,is 0.9 2.1 -.25 -.36 -.07 -.31 -.21 -.20 -.15 -.12 -.13 -.07 -.31 -.26 .29 -.23 .02 .03 -.13 -.42 -.29 .02 .49 

Correlations > |0.23  | are significant at p < .01 
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